代理控制交通灯
作者:Danko A. Roozemond,Jan L.H. Rogier
出处:Delft University of Technology
前言
(城市)交通控制系统的好坏决定于系统控制模式和实际交通流量模式是否相符。如果交通方式改变,他们通常所采取的有效措施是使系统适应这些改变。当这种改变能力成为交通控制系统单元的一部分,它将能更好地改变目前的交通状况。如果考虑人工调整,那么调整交通控制单元是一件花费昂贵和耗时大的事情。假如使用一种能够自我分析和自适应调整的交通控制系统,它将会带来额外的收益。对于这种可以适应环境改变的城市交通控制系统已经有销售。这种系统叫做自适应系统。“实时”自适应系统将需要主动计算交通信息和循环地计划,这种计划是根据不断计算更新的交通信息而采取的。
我们研究代理可用性技术在交通控制时可以分成两部分。首先,理论部分结合代理技术和交通控制。这项研究的最后阶段关注的是实际问题,如实施和收到的成效。在这里,我们目前的代理技术应用于动态交通控制概念。目前,我们正在设计一个代理分层模型为基础的城市交通控制系统。我们将在最后一章详细阐述。
自适应城市交通控制
自适应信号控制系统必须有能力根据目前的交通状况,通过调整优化交通流量。所有使用的交通信号控制方法是基于反馈算法,而反馈算法的数据来源于过去的几分钟到几年时间里的交通需求。当前的交通控制系统运作网络是根据测到的交通状况来协调适应性和灵活性。这些还不是根据交通需求在短时间内改变的最佳方法。其基本前提是,现有的信号计划工具能够根据不同的情况作出合适的信号计划。但是,目前可用的工具都是积极主动型,或者元规则型。这就使得改变控制器的方式放在系统中进行。交通控制的下一个逻辑步骤是将元规则、主动的和目标导向行为都列入。为此,从人工智能和人工智能代理的贡献可以预测,加强管制的主要方面包括:与冲突的目标处理能力;基于时间分析的决策能力;
管理、学习、自我调整和应对非经常性和突发事件的能力(Ambrosino等..,1994)。
什么是智能代理
代理技术是人工智能的一个新概念。人工智能代理模式是基于无功,自主,
内部机动的实体,动态的居住概念,并不一定是完全可预见的环境(Weiss,1999年)。自主是指在一段长时间内,能够作为一个独立单元,执行必要的行动以实现多种预先指定的目标,同时对同一体载传感器产生的刺激产生反应(Ziegler, 1990)。综合代理系统的特点是可以通过很多的代理系统互相合作去解决各种各样的问题。此外,人工智能、智能代理应该有一些额外的属性使得它自己可以解决一些实时问题、理解信息、有目标和方向、对情况进行分清区别、揉合新概念或想法。其解决问题的智能代理组件可以是一个以规则为基础的系统,但也可以是一个神经网络或模糊专家系统。显然,对代理技术而言,找到一个可行的解决方案是必要的。通常在分散系统中最优的是局部而不是全部。这个问题不容易解决。解决的方案可以参照裁缝业的相互作用机制,或者有监督代理人协调其他代理人进行优化的过程。
智能代理在UTC的使用是一种有益的范例
代理技术适合不同领域的UTC。那些值得最重要一提的是:信息代理、代理交通仿真和交通控制。目前,大多数运用智能代理来进行信息代理。它们通过网络收集信息。对于采用特殊设计的代理商用户可以提供具体的资料。城市交通智能代理可以为用户提供有关的天气信息,交通拥堵,公共交通,道路封锁,最佳路线等,成为个人的旅行助理。代理技术也可以用于数据的分配。代理和多代理系统,有模拟仿真复杂交通系统的能力。这些系统通常为每一个交通参与者使用一个代理(类似于面向对象程序使用对象)。我们感兴趣的是代理技术在(城市)交通控制中的应用。为此,我们最终使用实时代理技术进行有效的交通灯控制。信号计划将根据预测和探测器实测数据,以及相邻的代理控制的基础上而进行调整。代理技术最具有优势的是它的灵活性和积极性,可以给UTC带来更好的交通预测。当前的UTC不具有灵活性的,它无法自行调节,如果情况变化,不能处理非程序化的情况。代理技术可以在不同的控制层进行控制。这对于接近目前还处于低水平的UTC具有一定的优势。
设计基于城市交通控制系统的代理控制技术
我们争取的理想系统是一个基于启动的交通控制,并能亲积极处理交通情况,和处理不同的,以及有时相互矛盾的交通控制系统。本研究提出代理的概念是一种实验性。
基于城市交通控制的代理假设和考虑
基于城市交通控制和管理的代理,可以从三方面改善UTC系统的现状。 适应性。智能代理能够适应它的行为,可以学习从早期的情况。 通信。通信是的代理之间进行合作,从而对计划信号进行调整。 积极主动。由于积极主动,交通控制控制系统可以提前计划。
要对目前的交通控制单元进行替换,可以接受的是该系统应执行得和现在系统一样或者比它更好。基于UTC的代理将要求改变交通模式的在线反应和积极反应。基于UTC的代理应根据各个阶段的要求做出适应性的回应。当前的交通控制和预测方法是不够的,不能使用在代理技术上,应该发展新的交通控制和交通预测方法。适应性也可以分为几个不同的时间尺度,系统可能需要以不同的方式处理(Rogier,1999年):
由于渐进式的改革改变了一个较长时间的交通量; 由于突然的变化改变了一个较长时间的交通量; 突然,由于改用短的时间内的交通量,时空改变; 突然,时空改变,由于交通优先较短时间。
一种处理方法之间的性能和复杂性是一个等级制度布局使用的平衡。我们提出了一个在每一个层次的代理对自己负责的最佳解决方案,可能不仅影响邻近的代理,而且也可能影响更高一级代理。这些代理的下级代理之间解决他们不能解决的冲突任务。最后要提的一个方面是稳健的代理系统(如果所有运行的代理通讯失败,如果没有一个固定的代理程序被执行)。
为了能够保持我们的第一个城市交通控制模型尽可能简单,我们作了以下的假设:我们限制自己的市内交通控制(路段,路口,走廊),我们只处理控制与探测器(强度和速度)在所有路段的十字路口,只处理车和我们使用简单的规则为基础的知识表示。
剩余内容已隐藏,支付完成后下载完整资料
Agent controlled traffic lights
Author:Danko A. Roozemond,Jan L.H. Rogier
Provenance:Delft University of Technology
Introduction
The quality of (urban) traffic control systems is determined by the match between the control schema and the actual traffic patterns. If traffic patterns change, what they usually do, the effectiveness is determined by the way in which the system adapts to these changes. When this ability to adapt becomes an integral part of the traffic control unit it can react better to changes in traffic conditions. Adjusting a traffic control unit is a costly and timely affair if it involves human attention. The hypothesis is that it might offer additional benefit using self-evaluating and self-adjusting traffic control systems. There is already a market for an urban traffic control system that is able to react if the environment changes;the so called adaptive systems. 'Real' adaptive systems will need pro-active calculated traffic information and cycle plans- based on these calculated traffic conditions- to be updated frequently.
Our research of the usability of agent technology within traffic control can be split into two parts. First there is a theoretical part integrating agent technology and traffic control. The final stage of this research focuses on practical issues like implementation and performance. Here we present the concepts of agent technology applied to dynamic traffic control. Currently we are designing a layered model of an agent based urban traffic control system. We will elaborate on that in the last chapters.
Adaptive urban traffic control
Adaptive signal control systems must have a capability to optimise the traffic flow by adjusting the traffic signals based on current traffic. All used traffic signal control methods are based on feed-back algorithms using traffic demand data -varying from years to a couple of minutes - in the past. Current adaptive systems often operate on the basis of adaptive green phases and flexible co-ordination in (sub)networks based on measured traffic conditions (e.g., UTOPIA-spot,SCOOT). These methods are still not optimal where traffic demand changes rapidly within a short time interval. The basic premise is that existing signal plan generation tools make rational decisions about signal plans under varying conditions; but almost none of the current available tools behave pro-actively or have meta-rules that may change behaviour of the controller incorporated into the system. The next logical step for traffic control is the inclusion of these meta-rules and pro active and goal-oriented behaviour. The key aspects of improved control, for which contributions from artificial intelligence and artificial intelligent agents can be expected, include the capability of dealing with conflicting objectives; the capability of making pro-active decisions on the basis of temporal analysis; the ability of managing, learning, self adjusting and responding to non-recurrent and unexpected events (Ambrosino et al.., 1994).
Intelligent agents in UTC , a helpful paradigm
Agent technology is applicable in different fields within UTC. The ones most important mentioning are: information agents, agents for traffic simulation and traffic control. Currently, most applications of intelligent agents are information agents. They collect information via a network. With special designed agents user specific information can be provided. In urban traffic these intelligent agents are useable in delivering information about weather, traffic jams, public transport, route closures, best routes, etc. to the user via a Personal Travel Assistant. Agent technology can also be used for aggregating data for further distribution. Agents and multi agent systems are capable of simulating complex systems for traffic simulation. These systems often use one agent for every traffic participant (in a similar way as object oriented programs often use objects). The application of agents in (Urban) Traffic Control is the one that has our prime interest. Here we ultimately want to use agents for pro-active traffic light control with on-line optimisation. Signal plans then will be determined based on predicted and measured detector data and will be tuned with adjoining agents. The most promising aspects of agent technology, the flexibility and pro-active behaviour, give UTC the possibility of better anticipation of traffic. Current UTC is not that flexible, it is unable to adjust itself if situations change and cant handle un-programmed situations. Agent technology can also be implemented on several different control layers. This gives the advantage of being close to current UTC while leaving considerable freedom at the lower (intersection) level.
Designing agent based urban traffic control systems
The ideal system that we strive for is a traffic control system that is based on actuated traffic controllers and is able to pro actively handle traffic situations and handling the different, sometimes conflicting, aims of traffic controllers. The proposed use of the concept of agents in this research is experimental.
Assumptions and considerations on agent based urban traffic control
There are three aspects where agent based traffic control and -management can improve current state of the art UTC systems:
- Adaptability. Intelligent agents are able to adapt its behaviour and can learn from earlier situations.
- Communication. Communication makes it possible for agents to co-operate and tune signal plans.
- Pro-active behaviour. Due to the pro active behaviour traffic control systems are able to plan ahead.
To be acceptable as replacement unit for current traffic control units, the system should perform the same or better than current systems. The agent based UTC will require on-line and pro-active reaction on changing traffic pat
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[287150],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 变压器和超导磁体中的磁场和电磁力分析外文翻译资料
- 单模光纤中布里渊动态光栅反射谱的特性外文翻译资料
- 肽纳米管的结构转变外文翻译资料
- 大面积、无转移、抗氧化合成六方氮化硼薄膜及其与和的异质结构外文翻译资料
- 在金属触点在设计高性能单层n型WSe2场效应晶体管中的作用外文翻译资料
- 具有2D/2D欧姆接触器的高性能WSe2光电晶体管外文翻译资料
- 奇偶时间对称光晶格中具有竞争性的三阶和五阶非线性的光孤子的稳定性外文翻译资料
- 非局域非线性介质中艾里束脱落的孤子和呼吸艾里孤子的束缚态外文翻译资料
- 高阶衍射pt对称光晶格中的隙孤子外文翻译资料
- 通过浸渍提拉法制备的连续且高度有序的有机半导体薄膜:弯月面角的关键作用外文翻译资料