几何知识在求函数最值中的应用
Teaching and Learning geometry11-19[M]
摘要:几何是中学数学学习的重点。它又是研究函数性质的重要工具,它能把枯燥的函数字符转化为直观的图形,简单明了便于研究。很多函数最值问题都能转化成“形”的问题解决,更加便于理解。通过对用几何知识求函数最值的研究,熟练的掌握相关的知识,对所学的知识进行运用。对所学的几种几何知识求最值的方法进行归纳总结和对比,方便以后的学习使用。
关键词:几何;函数;最值
几何形状是历史最悠久的数学分支之一。它具有广泛的历史和文化背景。几何形状在相当长的一段时间内,被西方文化的数学教育赋予核心地位。其中一个经典几何的主要成就是系统性收集几何知识的古希腊人欧几里德。这为几何在学校任教奠定了基础,一直延续到现在。
在一个时期的20世纪50年代和60年代的数学教育改革中,一些新的课程纲要(有时被称为“新数学”)被开发,其中的重点主要是代数的正规结构。在同一时间,方法几何学的范围从传统的欧几里德式(其减少在深度)扩大到包括使用变换,向量,矩阵和一些拓扑。
近年来,许多国家一直在审查其几何课程的目标,内容和方法。国际数学委员会(ICM)由1995年的研究发现,对这些审查的结果没有形成明确的共识。小规模的研究性学习关于一些国家的资格及课程局于2000年委托几何课程( QCA)为英国证实了这一点。
在此背景下,工作组认为几何课程的理论基础,其可能的内容及关注点在有效的教学问题上。我们的报告阐述了在有关问题上,工作组达成了共识。在一些问题上,工作组没有得出结论,其他可能需要进一步研究。也有一些事项,工作组没有解决。为了帮助重大问题提出,该报告是围绕一系列重点同意原则展开的。该报告提出解释,并且用现有的证据支持论点,。更多的信息和例证在附录和英国皇家学会的网站上,每一个或多个建议跟每一个关键原则相联系。
关键原则1:对所有11〜19岁学生来说,几何应成为数学课程的显著成分。
这是一个简单的命题但表达了很多方面。首先我们考虑关于几何在教学中扮演的角色的一些问题,然后我们考虑几何关系在其他数学课程方面的问题。我们回顾一些关于几何教学方面的相关问题,用一些关键原则对阻碍几何教学的铺平了道路。
在有效的情况下,几何的研究可根据一些理由进行。几何学是数学的一个核心部分,与几何思维是和数学紧密结合的一个根本途径。几何形状可以用来培养学生的空间意识、直觉和可视化。它也可以被用来解决实际问题。几何知识也运用到平时的工作和生活中。其他学科如科技,就是利用几何思想和技术。几何学在我们的文化中是公认的,有其自身的一个有趣的历史,它在美学和设计的发展中占有一席之地。这可以用来鼓励猜想,演绎推理和证明的发展和使用。几何也可以为数学进一步的研究奠定基础。
在一系列技术快速发展的情况下,这就意味着现在和将来公民将具有多种显示图像的。这些可能会要求他们的工作需要交换信息,或只是与休闲相关的。由此可以得出,几何形状有一个作用,使学生理解,操作,控制和创造这样的图像公民权的发展中发挥。
近年来英国经济中的制造业到服务也有重大转变。与此相关的已经在那些具有灵活的思维好技能,并利用信息和通信技术(ICT)的需求明显增加,与应用数学的能力(不足简称“算术”技能)一起。一个直接后果就是一直备受公布招募和留住数学教师的问题。为了满足工业,商业的技能需求和包括教导,我们需要鼓励更多的学生积极参与数学,并选择继续学业,或者相关学科的专业。我们相信,几何数学研究有其自身的吸引力和满意度,其中,教好一个主题,可以鼓励更多超过16岁的学生继续数学研究。需要提供满足上述要求的研究在几何广度。为了确保学生还可获得适当的智力挑战和刺激,重要的是在一些课题提供课程的深度,当然,面临的挑战,就是在应分配给数学教学时的公平份额中做到这两点。
我们得出的结论这第一重要原则有两个建议。我们相信,几何形状在英文数学课程中的地位有所下降,,而这需要加以纠正。它不应该是“课题,不敢讲它的名字。”
时间的状态和分配给几何
关键原则4:几何应给予较高的地位,一起用的教学时间用于数学的公平份额。
最近出现了一种倾向,与“识”取代“数学”,就好像两个人。这相当于发出了不同方面的相对重要的混杂的数学课程信息。例如,标准的网站在互联网上的网页内(按照国家算术策略的描述)可以找到用于教学的数学框架。该算术框架帮助教师提高计算能力的标准在全国范围提供,他们拥有一整套年度教学计划,主要目标和规划。相似的引入到政府的绿皮书内。学校:建立成功的,在2001年2月发表,包含以下内容:每其次岁的学生必须是称职的识字,算术和信息通信技术的基础知识,体验超越了广泛的课程。建议:我们建议在政府出版物和广播词中使用 “算术”由“数学”代替,以保证给予几何应有的地位。
同时接受所谓的MA2数与代数在中学课程的区域应具备的教学时间量最大,我们认为关注一些中学报告可用数学的25%,有一直在使用总时间的侵蚀数学教学。尤其重点讲授数学阶段3,或许是教师短缺加剧。继NNS小学有一个日常的数学课,通过关键阶段2的结束,持续1小时。第二个学校按照新的关键阶段3的策略已获得指引的时候被分配到数学,至少每周3个小时。成员的工作组也表示,如果数学是有自尊与科学和英语等主要科目的奇偶校验,那么它应该是可以作为一个双奖在GCSE。
我们没有做出关于小学几何教学的具体建议。在两个主要关键阶段1(5-7岁的学生)和关键阶段2的(7-11岁学生)国家课程有MA3形状、空间和措施成分。NNS的框架,从接待教数学提供在这方面的一个解释每天数学课的框架。提供这种课程的有效实施,那么学生从小学转移到中学应该有哪些发展几何的研究,作出适当的基础。
工作组了解到,该中学的几何课程,它倡导的有效的教学比目前通常的情况很可能需要相当的时间用于几何。 MA3的重命名为“几何原本”应该意味着对非几何措施,如时间和速度的工作,从MA2搬迁来。数与代数某些方面可能的几何背景,如毕达哥拉斯定理内制定。
MA4汉鼎数据的问题已经提出了,甚至是否应该是所有数学课程的一部分。但是,我们不希望提出关于这个内容的任何建议,或其他的数学课程的一部分。这不是鸭子这个问题,但要记录它是给别人评价我们的要求的强度对于反对那些课程的其他部分。我们已经指出,几何课程方面缺乏健全的经验基础,对适当的教学方法有迫切的需要。在正确的方法引导下,通过适当的材料和资源,包括信息和通信技术的支持下,几何的教学也会更有效率。综上所述,我们认为一个广泛、连贯和苛刻的几何课程可以在公平合理的分配时间内有效地教。这可能需要数学课程的组分之间的平衡的一些评论。这当然需要更有效和高效的教学方法的发展。
我们已经得出结论,新的国家课程的几何内容,有了一些调整,为了良好的几何教育形成一个适当的基础很有必要。为了要实现这个,需要在几何的教学方式上实现相当大的变化。它至关重要的是,这些努力提高数学教育以保证他们的工作显著的改善(数学也一样)有助于几何知识的教学。关于改善几何教学需要一个显著致力于持续专业发展的重大项目,与相应的配套的教学器材。为了共同发展数学后,我们最后的结论是,让学生在他们的11-16建立对几何研究的机会是远远不够的。这些关注课程设计需要检讨与后16的资格在数学结构,以确保他们提供更好的机会,让学生继续学习几何知识。更多的是一般存在于那些拥有良好的数学技巧或者存在严重不足的,提供具有挑战性和趣味性的几何内容和背景应该是一个有价值的手段,使数学学习的学生更多更具吸引力。
剩余内容已隐藏,支付完成后下载完整资料
Teaching and Learning geometry11-19[M]
Geometry is one of the longest established branches of mathematics. It has an extensive historical and cultural background in Appendix5. Geometry has been accorded a central place in mathematical education in Western culture for a considerable period of time .One of the major achievements of classical geometry was the systematic collection by Euclid of the geometrical knowledge of the ancient Greeks. This has , until comparatively recently, formed the basis for much of the geometry taught in schools.
During a period of educational reforms in mathematics in the 1950s and 1960s some new syllabuses (sometimes called lsquo;the new mathrsquo;) were developed where the emphasis was on formal structures which were predominantly algebraic. At the same time, the range of approaches to geometry was broadened from its traditional Euclidean base (which was reduced in depth) to include the use of transformations, vectors, matrices and some topology.
In recent years many countries have been reviewing the aims, content and approach of their geometry curricula. The 1995 study by the international Commission on Mathematics (ICM)revealed that no clear consensus was emerging about the outcome of these reviews .The small scale research study into the geometry curricula of a number of countries commissioned in 2000 by the Qualifications and Curriculum Authority(QCA)for England confirmed this.
Against this background the working group considered the rationale for a geometry curriculum, Its possible content and issues concerned with its effective teaching .Our report sets out a number of recommendations on issues where the working group reached a consensus view. There are some matters on which the working group did not reach a conclusion, and which others may wish to pursue further .There are also some matters which the working group did not address. In order to help identify major issues raised, the report is structured around a number of agreed Key Principles. These are presented together with explanations, supporting arguments and, where available, evidence. Additional information and exemplification are provided in appendices and on the Royal Society website One or more recommendations are associated with each Key Principle.
Key principle1:Geometry should form a significant component of the mathematics curriculum for all students from 11 to 19.
This is a simple proposition to express yet it has many facets .First we consider some issues about the role of geometry in education .Then we consider the relation of geometry to other aspects of mathematics curriculum .We review some of the problems associated with teaching aspects of geometry and pave the way for other key principles which stem from this.
A valid case for the Study of geometry may be made on several grounds. Geometry is a central part of mathematics, and geometrical thinking is a fundamental way to engage with mathematics.
Geometry can be used to develop studentsrsquo; spatial awareness. Intuition and visualization .It can also be used to solve practical problems. There are many applications of geometry relevant employment and everyday life .Other subjects in the curriculum, such as science and technology ,make use of geometrical ideas and techniques .Geometry is well established in our culture and has an interesting history of its own, It has an important place in the development of aesthetics and design .It can be used to encourage the development and use of conjecture, deductive reasoning and proof, Geometry can also be used to lay foundations for further studies in mathematics.
It is our view that all of these grounds. Which have often been cited in the past .remain valid reasons for the inclusion of geometry as a significant part of the current curriculum. There are additional grounds that reflect recent changes our society.
This rapid development in a range of technologies means that citizens now and in the future will interact with a variety of forms of displayed images .These may be required by their work, be needed in order to exchange information or just be associated with leisure .A case can thus be made that geometry has a role to play within the development of citizenship in enabling students to interpret , manipulate, control and create such images.
In recent years there has been a major shift in the UK economy from manufacture to services. Associated with this has been a marked increase in demand of those with good skills in flexible thinking and the use of information and Communication Technology(ICT),together with the ability to apply mathematics (inadequately referred to lsquo;numeracy” skills).A direct consequence has been the much published problem in recruiting and retaining mathematics teachers. In order to fulfill the skills needs of industry ,commerce and the professions –including teaching –we need to encourage more students to engage positively with mathematics and to choose to continue their studies in it ,or related disciplines. We believe that geometry is a subject of mathematical study which has its own appeal and satisfaction and which ,well taught, could encourage more students to continue with the study of mathematics beyond 16.
Breadth of study in geometry needs to be provided to meet the demands outlined above. To ensure students also receive appropriate intellectual challenges and stimuli it is important to provide depth in a number of topics .The challenge, of course ,is to do both within a fair share of the time which should be allocated to mathematics teaching.
We conclude this first Key Principle with two recommendations. We believe that geometry has declined in status within the English mathematics curriculum and that this needs to be redressed.It should not be the “subject which dare not speak its name”.
Status and allocation of time to geometry
Key principle 4:Geometry should be
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[286899],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。